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Atom-transfer radical addition of �-iodo esters to 1-alkynyl
sulfides is described. The products, 2-alkoxycarbonylmethyl-1-
iodo-1-alkenyl sulfides, can be converted into �-keto esters.

1-Alkynyl sulfides can be good precursors to synthesize var-
ious organosulfur compounds.1 For example, Diels–Alder reac-
tions of 1-alkynyl sulfides with conjugated dienes giving cyclic
alkenyl sulfides have been reported.1c On the other hand, there
are few reports of radical reactions using 1-alkynyl sulfides as
substrates,2 although radical addition would be a powerful meth-
od to prepare synthetically useful vinyl sulfides. Here we report
atom-transfer radical addition of �-iodo esters to 1-alkynyl sul-
fides.

Treatment of butyl 1-octynyl sulfide (1a) with ethyl iodo-
acetate (2a) in the presence of a catalytic amount of dilauroyl
peroxide (DLP) in boiling benzene afforded the corresponding
adduct 3aa in 71% yield (Table 1, Entry 1).3,4 Although the ster-
eoisomeric ratio was close to 1:1, the reaction proceeded with
perfect regioselectivity. Alkynyl sulfides bearing a base-sensi-
tive siloxy moiety or an acid-sensitive THP moiety underwent
the radical addition without affecting the protective groups (En-
tries 2 and 3). Replacement of the butylsulfanyl group of 1a by
methylsulfanyl or phenylsulfanyl group did not affect the reac-
tivity (Entries 4 and 5). A secondary alkyl-substituted alkynyl
sulfide 1f was also applicable to the reaction, albeit the stereo-
selectivity was still low (Entry 6). Unfortunately, an aryl-substi-
tuted alkynyl sulfide, butyl phenylethynyl sulfide (1g), was not
suitable for the reaction because of the formation of a mixture
of regio- and stereoisomers.

The reaction would proceed in a manner similar to standard
atom-transfer radical reactions (Scheme 1).5 Undecyl radical,

thermally generated from DLP with release of CO2, would ab-
stract iodine from 2a to provide carbon-centered radical A.6 Be-
cause carbonylmethyl radicals are electron-deficient, radical A
would react smoothly with 1-alkynyl sulfide 1, an electron-rich
alkyne, to furnish the vinyl radical B. At this stage, the new car-
bon–carbon bond is formed regioselectively at the �-position of
the sulfur atom, at which higher electron-density resides due to
the resonance effect of the sulfur atom. The E/Z isomerization
between vinyl radicals B and B0 is fast. In addition, the sizes
of R1 and the ethoxycarbonylmethyl group are comparable.
Hence, both stereoisomers would react with 2a. Iodine-transfer
from 2a to the vinyl radicals would afford product 3 and regen-
erate radical A to complete the radical chain.

Next, we examined the scope of alkyl halides (Table 2).
Benzyl iodoacetate (2b) and tert-butyl iodoacetate (2c) also add-
ed to 1a to give the corresponding adducts, 3ab and 3ac in good
yields (Entries 1 and 2). Iodoacetonitrile (2d) also underwent the
addition reaction (Entry 3). However, radical addition of �-
iodoacetophenone (2e), N,N-diethyliodoacetamide (2f), or dieth-
yl bromomalonate (2g) to 1a resulted in failure, suffering from
giving a complex mixture (for the reaction with 2e) or no conver-
sion (for the reactions with 2f or 2g).

Table 1. Atom-transfer radical addition of ethyl iodoacetate 2a
to 1-alkynyl sulfides 1

R1 C C SR2 1

EtO

O
I

+ 20 mol% DLP

benzene, reflux, 4 h

R1 SR2

O

EtO
I

3
2a (1.5 equiv)

DLP = (n -C11H23CO2)2

Entry 1 R1 R2 3
Yield/%a

[E/Z or Z/E]

1 1a n-C6H13 n-Bu 3aa 71 [56/44]
2 1b t-BuMe2SiO(CH2)3 n-Bu 3ba 60b [54/46]
3 1c THPO(CH2)3 n-Bu 3ca 55b [56/44]
4 1d n-C10H21 Me 3da 82 [57/43]
5 1e n-C6H13 Ph 3ea 72 [52/48]
6 1f i-Pr n-C12H25 3fa 53b [54/46]

aIsolated yields. bCompounds 1 (30–40%) were recovered.
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Scheme 1.

Table 2. Atom-transfer radical addition of �-iodo esters and
nitrile 2b–2d to butyl 1-octynyl sulfide (1a)

nC6H13 C C SnBu  1a

R3
+

20 mol% DLP

benzene, reflux, 4 h

nC6H13 SnBu

I 3R3
2 (1.5 equiv)I

Entry 2 R3 3 Yield/%a [E/Z or Z/E]

1 2b CO2Bn 3ab 84 [55/45]
2 2c CO2t-Bu 3ac 74 [55/45]
3 2d CN 3ad 74 [54/46]

aIsolated yields.
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We then attempted transformation of 1-iodo-1-alkenyl sul-
fides 3 to exploit the utility of 3 in organic synthesis. The
Suzuki–Miyaura cross-coupling reaction7 of 3aa with phenyl-,
p-methylphenyl-, or p-fluorophenylboronic acid in the presence
of a palladium catalyst afforded the corresponding arylated prod-
uct, 1-aryl-1-alkenyl sulfide 4 in excellent yield (Scheme 2).

Finally, we investigated hydrolysis of the resulting 1-aryl-1-
alkenyl sulfides 4 under acidic conditions. Several conventional
conditions8 failed to hydrolyze 4. Instead, treatment of 4 with
concentrated sulfuric acid in boiling ethanol provided the corre-
sponding �-keto esters 5a–5c in high yields (Scheme 3).

In conclusion, we have achieved atom-transfer radical addi-
tion of �-iodo esters to 1-alkynyl sulfides. The products could
be converted into �-keto esters easily.9
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